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STATE-VECTOR CONTROL APPLIED TO LATERAL STABILITY
OF HIGH-PERFORMANCE ATRCRAFT

By Waldo I. Oehman and Jerrold H. Suddath
Langley Research Center

SUMMARY

2784

State-vector control has been applied to the problem of lateral stability
augmentation of high-performance aircraft. The problem considered was that of
evaluating the feedback gains that would produce desired stability character-
istics. The feedback gains are obtained as solutions of linear algebraic equa-
tions. A numerical example illustrates the practicability of the method. lén)

INTRODUCTION

Perturbed lateral motions of a high-performance aircraft may have undesir-
able stability characteristics at some flight conditions. A linear feedback
control system usually is designed to augment the lateral stability. The design
problem is quite complex if deflections of either the ailerons or the rudder
produce changes in both the rolling and yawing moments. The cross-control
effects (yawing moment caused by aileron deflection and rolling moment caused
by rudder deflection), if large, may require that the feedback of the rolling
and yawing velocities be applied to the ailerons and rudder to provide addi-
tional damping. The designer must determine the required cross-damper feedback
gains (rudder deflection due to rolling velocity and aileron deflection due to
yawing velocity) that provide desired stability characteristics, in addition to
the usual yaw-damper and roll-damper feedbacks.

A well-known mathematical theorem on linear dynamical systems (ref. 1) will
be applied to derive analytical expressions for the gains that will produce any
desired roots of the characteristic equation of the augmented system. The feed-
back gains are obtained as solutions of linear algebraic equations if the linear
dynamical system has the property of being completely controllable using a
single linear control function. The property of complete controllability has a
precise mathematical definition, and it is possible to check this property of
the system and to know in advance whether or not the required gains can be com-
puted. A numerical example is included for illustration.



SYMBOLS

b span, ft
CZ rolling-moment coefficient, Rollingmoment
Cn yawing-moment coefficient, Yawinisgoment
CY side-force coefficient, §ig§;§9£9§
i constant vector with components cq and o
g acceleration due to gravity, 32.2 ft/sec2
moment of inertia about principal body X-axis, slug—ft2
IZ moment of inertia about principal body Z-axis, slug—ft2
5 =VT
X feedback gain vector with components ki where i is 1, 2, 3, and 4
m mass, slugs
q dynamic pressure, %pve, 1b/sq ft
S wing area, sq ft
t time, sec
vy control vector with components 8, and Br
A airspeed, ft/sec
X state vector with components xy, X, Xz, and x)
a angle of attack of principal X-axis
B angle of sideslip
B, aileron deflection
5p rudder deflection




A parameter
M roots of characteristic equation where i is 1, 2, 3, and 4
alr density, slugs/cu ft

angle of roll

¥ angle of yaw
CZf%
c, _ %
5, OOg
Clar=%
iy - 2
o, * 3
CYB=§_§I

All angles are in radians unless otherwise noted. One dot over a quantity
means the first derivative with respect to time, and two dots over a quantity
means the second derivative with respect to time.

STATE-VECTOR EQUATIONS OF MOTION

A system of linear differential equations with constant coefficients that
describe the perturbed lateral motion of an airplane (see ref. 2) may be
written, using principal body axes, as
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Terms involving the rotary derivatives and the effect of control authorities
on side force have been omitted for convenience. These terms could have been
included without affecting the method of analysis, except that computations
would be more complicated.

If x; =B, Xy = ¢, Xz = ¢, and x, = @, then the state of the system
may be expressed as a four-component vector iz or

e B
Xq B
X, @
X = = (2)
'd
3 ¢
] LY
Similarly, the control deflections may be written as a two-component vector
W, or
5
a
T = (3)
2

The system (eq. (1)), with equations .(2) and (3), may be written in vector-
matrix notation, as

2= [A]e+ [e]& (%)
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The elements of the matrices [é] and [é] are constant parameters that depend

on flight conditions and airplane characteristics. The matrix [é] is the con-
trol effectiveness matrix.

The system of equations (eq. (4)) is the state-vector form of the equations
that describe the perturbed lateral motion of an airplane with controls. Aug-

mentation of the stabllity of the airplane is analyzed in the following
discussion.

STABILITY AUGMENTATION

Consider the airplane equations of motion with @ = 0. The system of
equations of motion for the free system is

2= [a]® (5)

The characteristic equation for the free system is a polynomial equation in A
and is defined by



p(A) = det[}[i] - [}J] =0 (6)

or

<llm

asb Cy,A=0 (7)
Ix

B

=\, 35 3 2 - 2 _
p(A) = A + = CYﬁ% + qu(IZ CnB T clﬁ>x

where [i] is the identity matrix, A 1is a parameter, and det[:] means

determinant of a square matrix. The roots Ay of the characteristic equation
provide information about the stability of the airplane.

If the free airplane system has undesirable stabllity characteristics, then
a feedback control system may be desirable to augment the stability. The prob-
lem, therefore, is to choose the control vector W such that the augmented
system (eq. (4)) has the desired stability characteristics, or, equivalently,
that the roots of the characteristic equation of the augmented system have the
desired values.

A mathematically simple form of the control vector results if the compo-
nents 3§, and ’, are assumed to depend only on a single linear feedback

function and to vary proportionally. The control vector then can be written

=2k .R) =k % (8a)

or

o
|

o = cl(klxl + XXy + ksXz + khxh)
(8v)

Sr 02(k1X1 + k2X2 + k5x5 + k)_I_X)_’_)

In equation (8a), the linear feedback function (kK . ¥) is the dot product of the

vectors k and it and k* is the transpose of k. The vector kK is called
the feedback gain vector and its components k4 are the feedback gains. The

components of the constant vector g are ¢y and Coe It is clear from equa-
tions (8b) that &, and 8, will generally vary proportionately (when ¢y £0

and cp ¥ O). However, for augmentation with either rudder or ailerons alone,
either ¢y or c, may be identically zero with the other component equal to

one. In any case, it is required that all four state-vector components (B8, ¢,
@, and ¥) be fed back.

The system of equations of motion (eq. (4)), with the control vector
defined in equation (8a), is

= (42« [6e 2= [[4] « [Joi]e (9)




Note that [[G]E’ E‘e] is an n X n matrix and that [[AZ[ + [6]2 B 1s the

matrix of the augmented system. The characteristic equation for the augmented
system (eq. (9)) is also a polynomial equation in A and is

a(n) = det[?{ﬂ - [4] - [¢] a’fée] =0 (10)

Refg;ence 1 shows that for each choice of characteristic roots, a gain
vector k can be determined if a condition of complete controllability, as
defined in reference 3, is satisfied. Furthermore, the gain vector is com-
puted by solving a set of linear algebraic equations in the gain factors. A
brief discussion of complete controllability of an augmented system is pre-
sented in the appendix.

The determinant of equation (10), when expanded, gives gq(A) as
_ 3
a(A) = AT - (Lck5 + Nk + YB))\

- [otp - Mg + (alc - Ne)k1 + Leke - YpLeks - Yok A2

- [% Ig + & Loky - YpLokp + (Mgl - LgNe)ks + ofNgle - LBNC)IQ‘])\

- (NgLe - Lgle)kp - %(NﬁLc - LBNc)kh =0 (11a)
where
5 3\
Ig = %7 CYB

Sb
Lo = [e4C +cC )9——
1%, 7 “27l, )Ty

- a5b
Ne (clcnsa + czcnsr)IZ 5 (11b)
= 350
BTy Ol
1]
Ng = 1 Cog /



The polynomial q(%) also may be written In terms of the desired characteristic
roots N as

a(A) = (A= M) (A = M) (A - M)(A - )

- [7@2()\5 + N+ AN+ 7\2)] N+ MMM, = 0 (12)

If the coefficients of powers of A 1in equation (11a) are equated to the coef-
ficients of like powers of A 1in equation (12), four simultaneous linear alge-
braic equations in the gains are obtained. They are

Leks + Noky =N + Mo+ Mg+ N - Y h
- (oL - No)ky - Lokp + YpLoks + YaNoky = MAp + Mgy + (N + M)(As + ) + ol - Ng
(13)

€ Loky - YgLekp + (NLe - Lgle ks + afNgle - LgNe)ky, = MAo(hs + N) + Ahy(Ny + N) - § 1

(TeNe - Nalo)kp + S(TgNe - Nale)ky = MAAsN,

Equations (13) are the desired linear equations for the feedback gains ki
in terms of the parameters of the airplane and the roots Ay of the character-
istic equation. The ratio cl/c2 (when cy/ep = Sa/Sr), with either ¢y
or co equal to 1, must be specified before these equations can be solved.
However, it is clear that this ratio should be chosen equal to the ratio of
augmenter deflection limits, which the designer must set from practical consid-
erations. Then, the ratio of the control deflections will have the proper
value when the augmenter system is saturated by a large disturbance.

EXAMPLE CALCULATIONS

Consider an airplane having the characteristics and flight conditions
given in the following table:




By FE v v e e e e e e e e e e e e e e e e e e e e e 22.%

g, ft/sec® . . i i i e e e e e . e e e e e e e e e 32.2
Ix, slug-ft2 . . . .. e e e e e e e e e e e e e e Cee 5021
R T S P 67 199
M, SIUZS o« « o « + o o o o o o o « o « « o o o o o v o o e e e e e 390.4
q, Ibfsq £t . . . . . . e e e e e e e e e e e e e e e e e 200
< TR T i i R e e e e v e e 200.
V, $E/SEC + ¢ ¢ v v v b e e e e e e e e e e e e e e e e e e 6000
ATtItUdE, PE v o v o v v e e e e e e e e e e e e e e e e e e e 125 000
Mach nUmbEr « . & 4 o @ ¢ 4 o o o o o o o o o s o o o e e e e e e 6
s A T T . 20
CIB, perradian . . ¢ ¢ ¢ o 0 0 e o e e e e e s e e s e e e e s e 0.015
CnB, per radian . . . . . . ¢ e 4 e e e 4 e e e 0 e o s o & o o s 0.31
CYB, per radian . . . . . ¢ ¢ v e 00 .. . et e e e e e e e e e e s -1.0
Cza , perraddan . . . . . . . . . e o o e s s e 4 o e s s e s .+ e = -0.075
a
Cls s per radian . . . . . . 0 . . . . e e e e e s e e e e e e e -0.15
T
Cnﬁa’ PET TBAIAR .+ « 4+ o 4 s e e e e e e e s e e e e e e e e e e . 0.08
Cnsr, per radian . . . . . . e e e e e e e e e e e e e e e . . -0.108

The roots of the unaugmented characteristic equation are

N

2
Ag = -0.0107835 + 1.786983

0

0.0044904

?\h = -0.0107835 - 1.78698j

These characteristics are representative of an airplane similar to the X-15
flying at Mach 6 and an altitude of 125 000 feet. The components of the vec-

tor ¢, are

c, = 1
o)
r 1
C G~ 4
2 "%, ¥

The selection of values for cy and c2 is based on the assumed relative

authorities of the ailerons and rudder for augmentation purposes. Maximum

authorities of the rudder and ailerons should be attained simultaneously for
the present choice of @&. The desired stability is represented by the roots
Ny of the controlled system which were chosen to satisfy military handling-

qualities specifications (ref. 4) and are




N = -0.0346

N = -0.69%
Az = =0.346 - 3.14
N, = -0.346 + 3.14]

where J = Jti.

The condition for complete controllability, from equation (A7) in the
appendix, is

aet[[dle, (e (e [EPEe] # 0

The inequality is satisfied with the numerical data of the example.

The solution of equation (13), with use of the example data, resulted in
the following gains:

ky = 0.9397%
k, = 0.0026195
ky = 0.0713637
k), = 0.0391162

A similar set of gains can be computed for any set of desired roots Ki of the

characteristic equation (eq. (9)), and, in a complete analysis, the roots may
have to be chosen selectively in order to insure reasonable gains.

Figure 1 presents the motions of the controlled airplane, for the partic-
ular set of chosen roots, following an initial sideslip angle of 10.9°. The
period of the oscillatory motion is 2 seconds and the time to damp to one-half
amplitude is 2 seconds. The motions of the free airplane system are included
in figure 1 for comparison. The free airplane has a period of about 3.5 sec-
onds, and the time to damp to one-half amplitude is about 64 seconds. Although
the motions were computed for a large initial sideslip angle, the aileron and

rudder deflections are within probable limits for an airplane of the type
considered.

10




CONCLUDING REMARKS

State-vector control theory has been applied to a stability problem of
high-performance aircraft. Analytical expressions have been derived for feed-
back gains that will produce any desired roots of the characteristic egquation
of the augmented system. The gains are given in terms of the parameters of the

system and the desired roots. A numerical example illustrates the practica-
bility of the method.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 7, 1965.
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APPENDIX
COMPIETE CONTROLLABILITY

A linear dynamical system is said to be completely controllable if, at any
initial time +t, any initial state x can be taken to the origin in a finite
length of time by the application of a suitable control function.

Consider the mathematical model of a linear dynamical system

L. We+ [ (A1)

where X is an n-vector, the state of the system, and T 1is an m-vector, the

control of the system. The rectangular matrices [E] and [ﬁ] are, in gen-

eral, functions of time. However, for present purposes, they are assumed to be
constant.

A necessary and sufficient condition for the constant system (eq. (Al))
to be completely controllable is

rank[[G:l, (A€, A€, - - - > [A]n'l]:cﬂ] =n (a2)

Suppose that the control vector @ is a scalar s times a known vector
-
c, or

=7

5 (A3)

Define a new n-vector
V= [@]E’ (ak)

so that the dynamical system is represented by

di)_ -

i [A]x + Ws (A5)
The condition for complete controllability of equation (A5) is

rank[M] = rank[:w’, A= &%, . . ., [A]n'l»‘z’] =n (A6)

or, since [ﬁ] is an n X n matrix,

12




- APPENDIX

det

7 [4]%, [A]e?, ., AT ?l £0

A more detailed and general discussion of complete controllability is
presented in reference 3.

(A7)
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Figure I.- Motion of airplane and controls,
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